Предел звука. Максимальная громкость и высота звука. Звук, виды звука

Довольно трудно ожидать, что правильная настройка звука найдется сразу же после начала концерта. Обычно для того, чтобы заставить всю систему звучать в точном соответствии с требованиями звукооператора, требуется более или менее продолжительное время. К тому же, звукооператор обязан учитывать постепенное изменение состояния слушателей и исполнителей, происходящее в процессе концерта, так что, даже получив идеальный вариант настройки, нельзя признать его окончательным. Поэтому обычно приходится производить постоянную корректировку звучания всех систем комплекса до тех пор, пока звук не заработает, а затем внимательно следить, чтобы тончайший и подвижный баланс этого звука не развалился.

Звук на концерте будет работать до тех пор, пока звукооператор не перестанет его поддерживать.

Запись концертного выступления

Неплохо записывать все проводимые с вашим участием концерты на магнитную ленту. Прослушивая эти записи, можно обнаружить многие типичные ошибки, которые повторяются каждый концерт. Проанализировав эти ошибки, можно попытаться улучшить или изменить индивидуальную форму сведения звука. Можно проследить все моменты, ускользающие из внимания во время непосредственной работы над звуком. Однако, оценивая качество сведения по фонограмме, нужно уметь точно учитывать влияние условий записи и прослушивания, а также влияние самого процесса записи, например, более узкий в сравнении с концертом динамический диапазон магнитной записи. Если производить запись с основных выходов микшерного пульта, в ней окажется переизбыток вокала, так как звучание вокала на концерте оказывается более мягким, чем в записи.

Несомненно, что исполнители также захотят услышать запись выступления, поэтому приготовьтесь к тому, что они придут в ужас, прослушивая вашу сырую фонограмму, качество которой будет чрезвычайно далеко от качества звучания специальных концертных записей компакт-дисков. Поэтому, если вы хотите получить более менее полноценную запись концерта, постарайтесь обеспечить необходимые условия записи, чтобы полученную запись концерта можно было по крайней мере пересвести заново.

В большинстве случаев полноценная стереофоническая запись концерта является неоправданной роскошью, отнимающей массу времени и сил, однако монофоническую запись, неплохо передающую атмосферу звучания на концерте, можно получить, если один из каналов двухканального магнитофона подключить к одному из выходов микшерного пульта, а второй - к микрофону, расположенному в зале, поблизости от рабочего места звукооператора. Такая запись позволяет оценить сигнал системы звуковоспроизведения, звучание в зале, а также получить при соответствующем смешении сигналов обоих каналов относительно приемлемый вариант концертной записи. Разумеется, при таком способе записи баланс концертного звучания будет сбит, поэтому для того, чтобы его сохранить, нужно использовать для записи суммарный сигнал обоих каналов микшерного пульта и правильно подобрать положение микрофона. Если же вы захотите получить полный стереофонический баланс концерта, вам придется использовать четырехканальный магнитофон. Потратьте перед концертом немного времени на подбор характеристик звучания записываемых сигналов и на определение положения микрофонов и вы получите очень даже неплохой материал для стереофонической демонстрационной записи концерта.

Сведение звука независимых исполнителей

Звучание концертов с независимыми исполнителями сводится несколько иначе, чем звучание групп, даже в том случае, если независимый исполнитель выступаете обычной группой исполнителей.


Похожая информация:

  1. B) В следующих предложениях подчеркните глагол-сказуемое, определите его видо-временную форму и залог. Переведите предложения на русский язык.

Выпустив видеокарты RX 400 серии, AMD за раз решили сделать процесс разгона проще, удобнее, более надежным и дав возможность, отказавшись от OverDrive в пользу созданной с чистого листа WattMan. Добраться до этой утилите можно запустив «Настройки Radeon» , после чего мышью поочередно нажать «Игры (найдете в меню сверху)» -> «Глобальные настройки (первый пункт с левой стороны)» -> «Глобальный WattMan» .

Тут нужно подробно остановиться на каждом пункте. С графиками, думаю, разберетесь сами, ничего там сложно там, разработчики только дали возможность ненужные пункты. Вот все остальное весьма полезное для разгона, за исключением нескольких непонятных пары пунктов.

GPU

В этом разделе собрано все, отвечающее за работу графического чипа.

«Частоты (Frequency)» –позволит изменять частоту работу графического чипа.

Вы можете менять частоту в процентном соотношении относительно заданных производителем в BIOS, на 30% в плюс или минус, тягая ползунок мышью. При этом меняются во всех семи режимах работы чипа. Это не самый удобный способ разгона, для начала вам придется узнавать, прошитые в BIOS рабочие частоты производителем для каждого из состояний, а потом с калькулятором считать, что в итоге будет получиться. Плюс нас интересует только максимально возможные частоты, на которой обычно работает графический чип в играх, то есть только состояние 6 и 7.

Переключив переключать до появления надписи «Динамически », сможете руками вбить нужное значение в каждом из семи режимов работы процессора, которое должно быть кратное 10. Именно здесь стоит экспериментировать с разгоном процессора, где методом перебора находя частоту, на которой ваша видеокарта будет стабильно работать. Учтите , если вы собираетесь менять частоты, «Контроль Напряжения» нужно переключить в ручной режим, чтоб умный BIOS автоматически не задирал напряжение, серьезно увеличивая энергопотребление видеокарты.

«Контроль Напряжения» – позволит изменить рабочее напряжение процессора. Видеокарта может в двух режимах, которые называются «Автоматически » и «Вручную» . Первый нас не особо интересует, напряжение регулирует BIOS в полностью автоматическом режиме. Второй то, что нам нужно, где для каждого из состояние процессора можем вбить напряжение питания. Если карту разгоняем, то увеличиваем напряжение, в рамках разумного конечно, потому что резко возрастет энергопотребление видеокарты, нагрев процессора и подсистемы питания. Не забывайте по умолчанию в не модифицированных заводских BIOS напряжение можно поднять только до 1.175 вольт.

Memory

В Memory можно подкрутить работу памяти на графической карте. Настройки полностью идентичны графическому процессору, то есть доступно изменения частоты работы и напряжения питания, которые можно менять двигая ползунки в процентном соотношении или передвинув переключатели, вручную вбивать точные значения. Вот только в отличии от графического процессора память имеет только два состояния, а разгон по частоте в заводских BIOS ограничен 2200Мгц. Плюс напряжение питания меняется не чипов памяти, а контроллера памяти. Зачастую при понижении вольтажа контроллера памяти на видеокартах RX 480 и RX 470 серии, память лучше разгоняется.

Fan

Этот раздел позволяет настроить работу вентиляторов на видеокарте, где «Мин» это минимальная скорость, а «Целевая» максимально возможное количество оборотов.

Передвинув переключатель «Speed» до появления надписи «Вручную » получаем возможность настраивать скорость работы вентиляторов. Нам будут доступно изменения минимальное и максимальное скорости вращения крыльчатки, которая будет меняться линейно в зависимости от температуры процессора. То есть чем выше поднимается температура, тем сильней будут раскручиваться вентиляторы.

Так же «Мин. акустический предел» это частота графического процессора, при опускании до которой, вентиляторы на видеокарте начинают плавно сбрасывать обороты, если температура чипа не выше «Целевой» (что это такое можете узнать ниже). То есть чем ниже здесь выставлено значение, тем дольше будут сбрасываться обороты вентиляторов системы охлаждения, чем больше, тем быстрей.

Temperature

В разделе Temperature можно настроить пороговую температуру графического чипа. «Целевая» видеокарта будет стараться, что выше её не поднималась, при необходимости раскручивая вентиляторы до максимума. «Макс.» — максимально допустимая температура, при достижении которой частота графического чипа будет сбрасываться чтоб выше её не поднималась.

«Ограничение энергопотребления» – задаем максимально возможный уровень энергопотребления, в случае его превышения сбрасываются частоты.

Chill

Начиная с драйверов Radeon Software Crimson ReLive Edition AMD 16.12.1, здесь появился новый Chill где пользователи получают доступ к новой одноименной интеллектуальной функции управления энергопотребления. Грубо говоря драйвер автоматически меняет частоту кадров (читай нагрузку на графический процессор) увеличивая в динамических сценах и уменьшая в статических. На данный момент это экспериментальная функция, которая поддерживаться пару десятков игр и можно смело её выключать.

«Chill» — здесь выключаем выклюем эту функцию.

Перед началом экспериментов с видеокартой, учтите, что графические чипы архитекторы Polaris, RX 480 и RX 470, больше нагреваются от увеличения напряжения питания, чем частоты. Так же напряжение питания памяти, а фактически контролера памяти, не может быть ниже напряжения питания графического чипа, то есть с 5 по 7 состояния процессора, вольтаж на чипе ниже 1 вольта опускать не будет. Плюс как уже писалось выше, если собираетесь увеличивать частоту процессора обязательно нужно переключать «Контроль Напряжения» в ручной режим, иначе видеокарта автоматически будет увеличивать напряжение, а это приведет к еще большему энергопотреблению.

Перед тем как начинать что-то крутить, запускаем тесты, используя для мониторинга частоты графического процессора программу MSI Afterburner и HWiNFO. Если они постоянно сбрасываться при высоких нагрузках, это значит, что скорей всего, видеокарта постоянно выходит за разрешенный лимит энергопотребления. Многие производители, перестраховываясь, изначально сильно занижают энергопотребление. В этом случае нужно в «Ограничение энергопотребление» увеличить это лимит, потянув ползунов в правую сторону. Ниже в таблице приведены приблизительные значения максимального энергопотребления, зашитого в BIOS производителями, исходя из которых, вы может прикинуть, на сколько вы увеличили лимит.

Видеокарты RX 470:

Asus Strix -95Вт

MSI Gaming X — 150Вт

Sapphire Nitro+ — 130Вт

Sapphire Nitro+OC — 130Вт

Gigabyte G1 Gaming – 105Вт

PowerColor Red Devil – 110 Вт

XFX — 92 Вт/89Вт/92Вт/87Вт

Видеокарты RX 480:

Asus Dual — 99Вт

Asus Strix – 130Вт

MSI Gaming X — 180Вт

Sapphire Nitro+ OC- 145Вт/140Вт/150Вт

Gigabyte G1 Gaming – 127Вт

Red Devil — 110Вт/150Вт/165Вт

XFX — 110Вт/115Вт

Если у вашей видеокарты 8-контактный разъем питания, то теоретически нагрузка может доходить до 255 Ватт. Но это теоретический максимум, вам вполне хватит лимит 180 Ватт.

После этого желательно поиграть в игры (обратите внимание не ограничиться запуском бенчмарков и всяких тестовых программ, а именно реальные игр ) требовательные к видеокарте с мониторингом частоты графического процессора. Если частота не сбрасывается и нет микрофризов, тогда можно приступать к разгону. В ином случае вам лучше добиться стабильности работы видеокарты, где помимо увеличения энергопотребления, можно так же сделать даунвольт (что это такое можете почитать ниже), а в особо клинических случаях жертвовать производительностью, уменьшая максимальную рабочую частоту графического процессора.

При разгоне в разделе GPU постепенно увеличиваем частоту, проверяя тестами на стабильность работы. Обычно при стандартном напряжении питания в 1,500 вольт RX 480 без проблем берет частоту 1360 мегагерца, а увеличив вольтаж до 1,750, берет 1400 мегагерц. То же самое проделываем с памятью, за раз поглядывая в HWiNFO на количество ошибок. В среднем память может работать на частоте 2150 — 2200 мегагерц. Но учтите при повышении частоты, автоматически повышаются тайминги, в итоге память может работать даже медленней чем на стандартной частоте. Изменить тайминги можно только отредактировав BIOS видеокарты, но это отдельная тема разговора.

Что касается RX 470 то с разгоном чипа ситуация похожая на RX 480, а вот разгонный потенциал памяти, зависит от производителя. Лучшей считается памяти Samsung которую ставят Sapphire RX 470 Nitro+, которая легко берет частоту за 2000 мегагерца.

Для даунвольтинга, а проще говоря, уменьшение напряжения, для снижения нагрева и энергопотребления графической карты, снижаем напряжение на графическом чипе и памяти, гоняем тесты, находя минимальное значение, при котором все стабильно будет работать, без артефактов и падения драйверов. В моем случае RX 480 на частоте 1290Мгц, прекрасно работает при напряжении питания 1,090 вольт, а напряжения питания памяти в среднем удается уменьшить на 0,1-0,05 вольта.

После того как подобрали оптимальные частоты для графического чипа и вольтаж, стоит заняться вентиляторами. Тот есть вам нужно подобрать такую частоту вращения, чтоб все сильно не шумело, при этом температура графического чипа, и системы питания находилась на приемлемом значении. Графический процессор спокойно можно работать при 80, а питания 95-100 градусов по Цельсию, но лучше целевой температурой чипа ставить 70-75 градусов, при которой, на видеокартах большинства производителей, вы не будете слышать системы охлаждения, даже при очень высоких нагрузках. Что касается нагрева цепей питания, то экспериментально найти такое значение оборотов вентиляторов, чтоб температура не выходила за пределы 80-85 градусов.

Перед тем как начнете экспериментировать с разгоном видеокарты с помощью WattMan, нужно закрыть (или как минимуму все сбросить до значений по умолчание) сторонние утилиты вроде MSI Afterburner, с мощью которых можно менять напряжение и частоту работу графического чипа, если не хотите чтоб программа не закрывалась с ошибкой, или неправильно выставлялся вольтаж, частота или обороты вентилятора видеокарты.

PS Статья постоянно изменяется и редактируется, если нашли ошибки пишите о них в комментариях.

В этой статье мы еще глубже окунемся в структуру строения слухового аппарата, и как бы соединим на «физическом» уровне, то о чем я писал в предыдущих трех статьях. Сегодня мы затронем тему «предел громкости» в двух следующих статьях. Звуковой сигнал любой природы может быть описан определенным набором физических характеристик: частота, интенсивность, длительность, временная структура, спектр и др. Им соответствуют определенные субъективные ощущения, возникающие при восприятии звуков слуховой системой: громкость, высота, тембр, биения, консонансы-диссо нансы, маскировка, локализация-стер еоэффект и т.п. Как мы знаем, слуховые ощущения не линейны по восприятию! Обычно, это всегда комплекс физических параметров. К примеру, громкость – это ощущение, возникающее из комбинаций частоты , от уникальности спектра и самой интенсивности звука.

Еще в давние времена было установлено взаимоотношение о не линейном восприятии слуха. Это вылилось в закон Вебера - Фехнера - эмпирический психофизиологич еский закон, заключающийся в том, что интенсивность ощущения пропорциональна логарифму интенсивности раздражителя.

В 1834 году Э. Вебер провел ряд экспериментов и пришел к выводу: новый раздражитель, чтобы отличаться по ощущениям от предыдущего, должен отличаться от исходного на величину, пропорциональную исходному раздражителю. На основе этих наблюдений Г. Фехнер в 1860 году сформулировал «основной психофизический закон», согласно которому сила ощущения пропорциональна логарифму интенсивности раздражителя . Как пример: люстра, в которой 8 лампочек, кажется нам настолько же ярче люстры из 4 лампочек, насколько люстра из 4 лампочек ярче люстры из 2 лампочек. То есть количество лампочек должно увеличиваться в одинаковое число раз, чтобы нам казалось, что прирост яркости постоянен. И наоборот, если абсолютный прирост яркости (разница в яркости «после» и «до») постоянен, то нам будет казаться, что абсолютный прирост уменьшается по мере роста самого значения яркости. Например, если добавить одну лампочку к люстре из двух лампочек, то кажущийся прирост в яркости будет значительным. Если же добавить одну лампочку к люстре из 12 лампочек, то мы практически не заметим прироста яркости.

Из этого примера (хотя он полностью не описывает структуру «громко-восприяти я») мы видим прямое и явное перевоплощение «частотных групп» (критические полосы) слухового аппарата. Их заполняемость, подобно «лампочкам», приводит к субъективному увеличению чувства громкости. Степень «заполняемости» называется «интенсивностью» звука.

Но прежде чем мы будем более подробно говорить не только о громко-восприятии, но и о такой возможности слухового аппарата, как установление высоты тона, нужно более подробно окунуться в строение «уха» и наглядно понять работу всех этих «фишек». Об этом я поведаю в следующей статье.

8417 0

Kаким бы методом исследования не пользовались при аудиологическом изучении слуховой функции, существенными являются представления об основных физических характеристиках звуковых сигналов. Ниже будут представлены лишь самые основные понятия акустики и электроакустики.

Значения скорости распространения звуковой волны при разной температуре


Звук в природе распространяется в виде изменяющегося во времени возмущения упругой среды. Колебательные движения частиц такой yпругой среды, возникающие под воздействием звука, называются звуковыми колебаниями, а пространство распространения звуковых колебаний создает звуковое поле. Если среда, в которой распространяются звуковые колебания, является жидкой или газообразной, то частицы в этих средах колеблются вдоль линии распространения звука и поэтому их принято рассматривать как продольные колебания.

При распространении звука в твердых телах, наряду с продольными колебаниями, наблюдаются и поперечные звуковые колебания. Естественно, что распространение колебаний в среде должно иметь какое-либо направление. Это направление называется звуковым лучом, а поверхность, соединяющую все смежные точки звуковой волны с одинаковой фазой колебаний, принято называть фронтом звуковой волны. Кроме того, звуковые волны в различных средах распространяются с различной скоростью. При этом необходимо учитывать, что значение скорости определяется плотностью среды, в которой распространяется звуковая волна.

Сведения о значениях плотности звуковой среды весьма существенны, так как эта плотность создает определенное акустическое сопротивление распространению звуковой волны. На скорость распространения звуковой волны влияет также температура среды: при повышении температуры среды скорость распространения звуковой волны возрастает.

Основными для аудиологического обследования физическими характеристиками звука являются его интенсивность и частота. Именно поэтому они будут рассмотрены более подробно.

Для перехода к физической характеристике интенсивности звука вначале необходимо рассмотреть ряд других параметров звуковых сигналов, имеющих отношение к их интенсивности.

Звуковое давление - p(t) - характеризует силу, действующую на площадь, расположенную перпендикулярно к движению частиц. В системе СИ звуковое давление измеряется в Ньютонах. Ньютон - это сила, придающая массе в 1 кг ускорение в 1 м/с за 1 с и действующая на 1 квадратный метр, сокращенно Н/м2.

В литературе приводятся и другие единицы измерения звукового давления. Ниже представлено соотношение основных используемых единиц:

1Н/м2-10 дин/см2=10 мкбар (микробар)

Энергия акустических колебаний (Е) характеризует энергию частиц, движущихся под действием звукового давления (измеряется в джоулях - Дж).

Oтнесение энергии на единицу площади характеризует акустическую плотность, измеряемую в Дж/м2. Собственно интенсивность звуковых колебаний определяется как мощность или плотность акустического потока за единицу времени, т.е. Дж/м2/с или Вт/м2.

Человек и животные воспринимают весьма большой диапазон звуковых давлений (от 0,0002 до 200 мкбар). Поэтому для удобства измерения принято пользоваться относительными величинами, а именно, десятичной или натуральной шкалами логарифмов. Звуковое давление измеряется в децибелах и белах (1Б = 10 дБ), если используются логарифмы с десятичным основанием. Иногда (довольно редко) звуковое давление измеряется в ненерах (1Нн = 8,67 дБ); в этом случае используются натуральные логарифмы, т.е. логарифмы не с десятичными (как в случае с Б и дБ), а с двоичным основанием.

Однако следует учесть, что оценка в белах и децибелах была принята как логарифмическая мера отношения мощностей. Между тем, мощность и интенсивность пропорциональны квадрату звукового давления. Поэтому дня перехода к интенсивности звука устанавливаются следующие oтношения:


где N - интенсивность или звуковое давление (Р) в белах (Б) или децибелах (дБ), I0 и Р0 - условно принимаемые уровни отсчета интенсивности и звукового давления. Обычно уровнем отсчета звукового давления (часто в литературе используется сокращение "УЗД", от начальных букв слов "уровень звукового давления", а в английском языке используется аббревиатура - "SPL" (от идентичного выражения "Sound Pressure Level") считается 2x10-5 Н/м2. Соотношения УЗД с другими единицами измерения интенсивности звука выглядит следующим образом:

2х10-5 Н/м2=2х10-4дин/см2=2х10-4 мкбар

Рассмотрим теперь акустические характеристики частоты звуковых сигналов. В большинстве случаев для обследования слуховой функции используют гармонические звуковые сигналы.

Гармонический звуковой сигнал (иначе синусоидальный сигнал или чистый тон), обладающий также начальной фазой включения тонального сигнала, помимо звукового давления, характеризуется такой важной физической характеристикой как длина волны. Все гармонические звуковые сигналы (или чистые тоны) обладают периодичностью (т.e., периодом Т). В этом случае длина звуковой волны определяется как расстояние между соседними фронтами волны при одинаковой фазе колебаний и вычисляется по формуле:

J = с х Т

Где с - скорость распространения звуковых колебаний (обычно м/с), I их периодичность. При этом частота звуковых колебаний (f) соответствует формуле:

f = J/Т

Частоту тона оценивают количеством звуковых колебаний в секунду и выражают в герцах (сокращенно - Гц). Исходя из диапазона воспринимаемых человеком частот звуковых колебаний, частоты в диапазоне 20 - 20000 Гц называют звуковыми, более низкие частоты (f < 20 Гц) называют инфразвуками, а более высокие (f > 20000 Гц) - ультразвуками.

В свою очередь, чисто из практических соображений, диапазон звуковых частот иногда условно делят на низкие - ниже 500 Гц, средние 500-4000 Гц и высокие - 4000 Гц и выше. Заметим, что для обозначения звуковых колебаний от 1000 Гц и выше часто пользуются обозначением килогерц, сокращенно кГц.


Схематическое изображение формы и спектра ряда звуковых сигналов, используемых при аудиологических исследованиях:

1 - тональный сигнал; 2 - короткий звуковой импульс (щелчок); 3 -шумовой сигнал; 4 - короткая тональная посылка; 5 - амплитудно-модулированный сигнал (Т - период амплитудной модуляции); 6 - частотно-модулированный сигнал.


Если в звуковом сигнале представлено много разных частот (в идеале все частоты звукового спектра), то возникает, так называемый, шумовой сигнал.

Одним из методов аудиологического обследования больных является акустическая импедансометрия. Поэтому рассмотрим более подробно еще одну физическую характеристику звуковых сигналов.

Хорошо известно, что при распространении в средах разные виды энергии встречают определенное сопротивление. Выше указывалось, что такое же сопротивление встречает и акустическая энергия при распространении звуковых волн в акустических системах. Из последующего изложения станет очевидным, что периферические отделы слуховой системы, т.е. наружное и среднее ухо, представляют собой с физической точки зрения типичные акустические системы, а именно, акустические приемники звука. Поэтому и необходимо рассмотрение существа и характеристик акустического сопротивления с учетом прохождения звуковых сигналов через периферические отделы слуховой системы.

Комплексное акустическое сопротивление или акустический импеданс определяется как общее сопротивление прохождению акустической энергии в акустических системах. Акустический импеданс представляет собой отношение комплексных амплитуд звукового давления к колебательной объемной скорости и описывается формулой:

Za = ReZa + ilmZa

В этом уравнении ReZa представляет собой активное акустическое сопротивление (иначе его называют истинным или резистивным сопротивлением), которое связано диссипацией энергии в самой аккустической системе. Под диссипацией энергии понимают ее рассеивание в переход энергии упорядоченных процессов (какой, например, является кинетическая энергия звуковых волн) в энергию неупорядоченных процессов (в конечном итоге - в теплоту). Вторая часть уравнения ilmZa (его мнимая часть) получила название реактивного акустического сопротивления, которое обусловлено силами инерции или силами упругости, податливости или гибкости.

Ниже будет подробно изложена процедура исследования акустического импеданса среднего уха при ряде существенных для аудиологического обследования измерений (тимпанометрия, импедансометрия).

Я.А. Альтман, Г. А. Таварткиладзе

Психоаку́стика — наука, изучающая психологические ифизиологические особенности восприятия звука человеком.

Предпосылки

Во многих приложениях акустики и обработки звуковых сигналов необходимо знать, что люди слышат. Звук, который образуют волны давления воздуха, может быть точно измерен современным оборудованием. Однако понять, как эти волны принимаются и отображаются в нашем головном мозге — задача не такая простая. Звук это непрерывный аналоговый сигнал, который (в предположении, что молекулы воздуха бесконечно малы) может теоретически переносить бесконечное количество информации (может быть бесконечное число частот, содержащих информацию об амплитуде и фазе).

Понимание процессов восприятия позволит ученым и инженерам сосредоточиться на возможностях слуха и не учитывать менее важные возможности других систем. Важно также отметить, что вопрос «что человек слышит» не только вопрос о физиологических возможностях уха, но во многом также вопрос психологии, чёткости восприятия.

Пределы восприятия звука

Человеческое ухо номинально слышит звуки в диапазоне от 20 до 20 000 Гц. Верхний предел имеет тенденцию снижаться с возрастом. Большинство взрослых людей не могут слышать выше 16 кГц. Ухо само по себе не реагирует на частоты ниже 20 Гц, но они могут ощущаться через органы осязания.

Частотное разрешение звука в середине диапазона около 2 Гц. То есть изменение частоты более чем на 2 Гц ощущается. Однако есть возможность слышать еще меньшую разницу. Например, в случае, если оба тона приходят одновременно, в результате сложения двух колебаний возникает модуляция амплитуды сигнала с частотой, равной разности исходных частот. Этот эффект известен также как биение.

Диапазон громкости воспринимаемых звуков огромен. Наша барабанная перепонка в ухе чувствительна только к изменению давления. Громкость звука принято измерять в децибелах (дБ). Нижний порог слышимости определен как 0 Дб, а определение верхнего предела слышимости относится скорее к вопросу, при какой громкости начнётся разрушение уха. Этот предел зависит от того, сколько мы слышим звук. Ухо способно пререносить кратковременное повышение громкости до 120 дБ без последствий, но долговременное восприятие звкуков громкостью болеее 80 дБ может вызвать потерю слуха.

Более тщательные исследования нижней границы слуха показали, что минимальный порог, при котором звук остаётся слышен, зависит от частоты. Этот график получил название абсолютный порог слышимости. В среднем, он имеет участок наибольшей чувствительности в диапазоне от 1 кГц до 5 кГц, хотя с возрастом чувствительность понижается выше 2 кГц.

Кривая абсолютного порога слышимости является частным случаем более общих — кривых одинаковой громкости. Кривые одинаковой громкости — это линии, на которых человек ощущает звук разных частот одинаково громкими. Кривые были впервые получены Флетчером и Мэнсоном (H Fletcher and W A Munson), и опубликованы в труде «Loudness, its definition, measurement and calculation» в J.Acoust. Soc Am.5, 82-108 (1933). Позже более точные измерения выполнили Робинсон и Датсон (D W Robinson and R S Dadson «A re-determination of the equal-loudness relations for pure tones» in Br. J. Appl. Phys. 7, 166—181 ,1956). Полученные кривые значительно различаются, но это не ошибка, а разные условия проведения измерений. Флетчер и Мэнсон в качестве иточника звуковых волн использовали наушники, а Робинсон и Датсон — фронтально расположенный динамик в безэховой комнате.

Измерения Робинсона и Датсона легли в основу стандарта ISO 226 в 1986 г. В 2003 году стандарт ISO 226 был обновлён с учетом данных, собраных из 12 международных студий.

Что мы слышим

Человеческий слух во многом подобен спектральному анализатору, то есть, ухо распознает спектральный состав звуковых волн без анализа фазы волны. В реальности фазовая информация распознается и очень важна для направленного восприятия звука, но эту функцию выполняют ответственные за обработку звука отделы головного мозга. Разница между фазами звуковых волн приходящих на правое и левое ухо позволяет определять направление на источник звука, причем информация о разности фаз имеет первостепенное значение, в отличие от изменения громкости звука воспринимого разными ушами. Эффект фильтрации передаточных функций головы также играет в этом важную роль.

Эффект маскировки

В определённых случаях один звук может быть скрыт другим звуком. Например, разговор на автобусной остановке может быть совершенно невозможен, если подъезжает шумный автобус. Этот эффект называется маскировкой. Говорят, что слабый звук маскируется, если он становится неразличим в присутствии более громкого звука.

Различают несколько видов маскировки:

По времени прихода маскирующего и маскируемого звука:

  • одновре́менное (моноуральное) маскирование
  • вре́менное (неодновременное) маскирование

По типу маскируещего и маскируемого звуков:

  • чистого тона чистым тоном различной частоты
  • чистого тона шумом
  • речи чистыми тонами
  • речи монотонным шумом
  • речи импульсными звуками и т. п.

Одновре́менная маскировка

Любые два звука при одновременном прослушивании оказывают влияние на восприятие относительной громкости между ними. Более громкий звук снижает восприятие более слабого, вплоть до исчезновения его слышимости. Чем ближе частота маскируемого звука к частоте маскирующего, тем сильнее он будет скрываться. Эффект маскировки не одинаков при смещении маскируемого звука ниже или выше по частоте относительно маскирующего. Более низкочастотный звук сильнее маскирует высокочастотный.

Вре́менная маскировка

Это явление похоже на частотную маскировку, но здесь происходит маскировка во времени. При прекращении подачи маскируещего звука маскируемый некоторое время продолжает быть не слышимиым. В обычных условиях эффект от временной маскировки длится значительно меньше. Время маскировки зависит от частоты и амплитуды сигнала и может достигать 100 мс.

В случае, когда маскирующий тон появляется по времени раньше маскируемого, эффект называют пост-маскировкой. Когда маскирующий тон появляется позже маскируемого (возможен и такой случай), эффект называют пре-маскировкой.

Постстимульное утомление

Нередко после воздействия громких звуков высокой интенсивности у человека резко снижается слуховая чувствительность. Восстановление обычных порогов может продолжаться до 16 часов. Этот процесс называется «временный сдвиг порога слуховой чувствительности» или «постстимульное утомление». Сдвиг порога начинает появляться при уровне звукового давления выше 75 дБ и соответственно увеличивается при повышении уровня сигнала. Причем наибольшее влияние на сдвиг порога чувствительности оказывают высокочастотные составляющие сигнала.

Фантомы

Иногда человек может слышать звуки в низкочастотной обасти, хотя в реальности звуков такой частоты не было. Так происходит из-за того, что колебания базилярной мембраны в ухе не являются линейными и в ней могут возникать колебания с разностной частотой между двумя более высокочастотными.

Этот эффект используется в некоторых коммерческих звуковых системах, чтобы расширить область воспроизводимиых низких частот, если невозможно адекватно воспроизвести такие частоты напрямую.

Психоакустика в программном обеспечении

Психоакустические модели слуха позволяют с высоким качеством производить компрессию сигнала с потерей информации (когда восстановленный сигнал не совпадает с исходным), за счет того, что позволяют точно описать, что можно безопасно удалить из исходного сигнала — то есть, без значительного ухудшения качества звука. На первый взгляд может показаться, что вряд ли это позволит обеспечить сильное сжатие сигнала, но программы, использующие психоакустические модели позволяют добиться уменьшения объемов файлов с музыкой в 10—12 раз меньше, чем несжатые с очень незначительной разницей в качестве.

К таким видам компрессии относятся все современные форматы компрессии звука:

  • Ogg Vorbis
  • Musicam (используется для цифрового аудиовещания в некоторых странах)
  • ATRAC используется в формате MiniDisc
mob_info